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A method of investigating the possible dynamic origin of symmetries among the strong interactions is 
illustrated by application to a model with vector mesons that are self-consistently bound states of one 
another. The SU% model, with eight vector mesons, is concentrated upon. All possible types of first-order 
perturbations are treated in the ladder approximation, and some second-order effects are also considered. 
The results emerging from a qualitative discussion uniquely suggest the possibility (in addition to the 
degenerate mass solution) of a self-supporting small mass splitting structure of the type leading to the Gell-
Mann-Okubo mass formula. Moreover, SU2 symmetry is necessarily retained, although the differentiation 
between charge and hypercharge is not possible in a theory which does not include electromagnetism. 

I. INTRODUCTION 

THERE are many indications that SUz symmetry 
provides a useful way to correlate the properties 

of the strongly interacting particles.1"7 Although the 
departures from perfect symmetry are large, they have 
themselves a characteristic structure exhibited through 
the retention of isotopic spin symmetry and through 
the Gell-Mann-Okubo formula for the mass differ­
ences. 8~12 One of the central questions of strong inter­
action physics is whether these characteristic relations 
among the masses and coupling constants must be 
obtained from ad hoc postulates, or whether they arise 
automatically through the interworkings of dynamical 
effects.13,14»14a We consider here a restricted aspect of this 
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question using a simplified treatment. We shall discuss 
interrelations among the various manifestations of a 
small dissymmetry, and shall suggest a possible dy­
namical reason for the particular form which the dis­
symmetry takes. 

Charge and hypercharge conservation, as well as 
charge conjugation symmetry, are assumed to hold. 
We do not examine perturbations leading to the possi­
bility that these concepts break down, because they 
seem to have validity outside the domain of the strong 
interactions. 

In the investigation of this problem, we have been 
forced, as a result of the limitations in our present 
understanding of strong interaction dynamics, to confine 
our attention to a qualitative discussion of simple 
models having the following general features: (1) We 
consider only states with two relatively light particles; 
(2) we use the ladder approximation; (3) we introduce 
an over-all cutoff A, which we adjust to enable the equa­
tions for the masses and coupling constants to be self-
consistently satisfied, but which we do not attempt to 
calculate from the particle size implied by our model; 
(4) we study only those solutions of the nonlinear self-
consistency equations in which the dissymmetries are 
small. 

We shall examine in this paper a simple model in 
which only vector mesons appear. I t has been shown, 
for this model, that if the masses are equal, the mesons 
must fit into the adjoint representation of some semi-
simple Lie group.9 In our discussion of the possibility 
of nonequal masses, we consider primarily the case of 
eight vector mesons, which corresponds to SUz being 
taken as a first approximation. 

By considering this simple vector meson model, we 
will be able to describe the underlying physical con­
cepts as well as the calculational techniques in the 
simplest situation possible. A remarkable limitation on 
the possible types of dissymmetry arises from our 

9, 11). Second, we have, in consequence, concentrated upon the 
delimitation of such solutions, in particular, assuming the exist­
ence of a symmetrical solution, we have here examined solutions 
with broken symmetry, whereas Abers, Zachariasen, and Zemach 
have focused upon establishment of the plausibility of the exist­
ence of symmetrical solutions. 
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TABLE I. Mass dissymmetry matrices D(r,T) for octuplets. 
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qualitative discussion of this model, which encourages 
the belief that the problem of strong interaction sym­
metry can be solved by considering it as a problem of 
self-consistency. The discussion of the vector-meson 
model which is given here can be generalized without 
difficulty to a more realistic model in which there are 
boson-baryon couplings, leading to similar results which 
will be reported in a subsequent paper. 

In the generalized vector-meson model (generalized 
to nonequal masses) the masses and coupling constants 
are determined by self-consistency equations which could 
be derived (for example) by the method of Zacharlasen 
and Zemach,15 or from the Bethe-Salpeter equation,16 

and which are similar to those in Ref. 9. If we eliminate 
the coupling constants from these equations, the self-
consistency equation for the mass matrix (M2)ab can 
be written in the form17: 

M2^k{M2,k)) (1) 

which just represents the dependence of the calculated 
mass on the masses of the particles being bound together 
and of the exchanged particles. 

Following Glashow,8 we represent M2 in terms of 
normalized tensor operators D(vT): 

M2 = Y,a(rT)D(rT), 
TT 

(2) 

where r denotes a representation of SUa and T the 
total isotopic spin. Since charge Q and hypercharge Y 
are conserved, the D'§ correspond to Q= F = 0 . For the 
vector mesons, charge-conjugation symmetry and Her-
miticity limit r to (2,2) (27-fold), (1,1)5 (8-fold), and 
(0,0) (singlet). The explicit forms of the D(rT) are 
given in Table I. The coefficient a(0,0), which is related 
to the average 9712, is determined by a choice of scale 
and will be ignored hereafter. A self-consistent solution 
which is completely symmetric corresponds to a(rT) = 0 
for f5^(0,0). We assume that such a solution of (1) 
exists. 

If we restrict our attention to small dissymmetries, 

« F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 
16 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951). 
17 We follow the conventional practice in considering the 

squares of the boson masses to be the variables. 

we may expand (1) to second order as 

a(rT) = K(r)a(rT) 

+ E L{rT,rlT1,r2T2)a{r1T1)a{r2T2). (3) 
(ri71i,r271

2) 

We have denoted by K(r) the eigenvalue of Kab,cd 
= dkab/d(M2)cd in the representation r. Equation (3), 
which consists of five simultaneous quadratic equations, 
has a large number of solutions [[not all of which neces­
sarily correspond to solutions of (1)]. 

We shall classify the solutions of (1) or (3) according 
to their relation to the root diagram of SU$ (Fig. 1). 
In expanding the mass dissymmetry matrix, we have 
labelled the tensor operators by their isotopic spin. 
Now, SU2 is contained as a subgroup in SU$ in three 
distinct ways, corresponding to the three sets of re­
ciprocal roots; any of these sets could be interpreted 
as the isotopic spin operators. If we express the mass 
matrix corresponding to one of the solutions of (1) in 
terms of tensor operators labeled according to one of 
the other two sets of reciprocal roots, we obtain new 
coefficients af(rT) which will also correspond to a 
solution of (1). In other words, the solutions of (1) or 
(3) form a representation of the symmetry group of 
the root diagram. 

The nonlinear terms of (3) are, in part, determined 
by the Clebsch-Gordan coefficients of SU3; in particular, 
they must be consistent with the subgroups of SUS. We 
look especially at dissymmetries which are invariant 
under a subgroup of S£/3; the direct product of one-
dimensional representations of a group is one dimen­
sional, so other types of dissymmetry cannot be mixed 
in through the nonlinearities. The possibility that all the 
a's vanish, i.e., that complete symmetry under SU3 
is maintained, is, of course, obtained as a trivial 

FIG. 1. The root diagram for SU3. 
(-D 
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FIG. 2. First-order mass perturbation of vector mesons as an 
expansion in self-energy graphs. The solid lines represent the 
vector mesons. The perturbation can act on a propagator or a 
vertex (see Fig. 3) and it is described by a wriggly line. This sug­
gests its interpretation as an external field with Q=Y—0. We 
wish to emphasize, however, that the "bare coupling constants" 
of this field need not be considered to be different from zero. 

solution of (3). We see that there must also be solutions 
of (3) [with a((8),0) and a((27),0) being the only non-
vanishing coefficients] which maintain isotopic spin 
symmetry, and further solutions [with a((27),2) also 
different from zero] which exhibit charge symmetry but 
not full isotopic spin symmetry. From these solutions, 
others can be generated by permuting the roots, as 
described above. The dissymmetry given by 

D(S)= (W5)£(27,0)+fD(27,2) (4) 

is invariant under permutation of the roots, and there­
fore, will necessarily arise as one of the solutions. 

II. THE SU2 MODEL 

Before examining the possibility of unsymmetrical 
solutions in the SUs model, we shall illustrate the 
approach by discussing SU2, which is much simpler. 
The only possible dissymmetry in the adjoint repre­
sentation corresponds to T==2: Af±

2=9H2+a/V6, M<? 
= SfT!2—2a/->j6. Then upon eliminating A by requiring 
that self-consistency be attained with a given fixed 
value of 9TC2, (1) takes the form 

a—k(a) 
= Ka+La2-] . (5) 

From the truncated expansion one obtains the solutions 

(6) 
a=(l-K)/L. 

If it should turn out that K were close to unity, the 
neglect of higher-order terms in (5) would be justified, 
and we would have found a second self-consistent solu­
tion which was slightly unsymmetrical. If, on the other 
hand, 1—K were not small, one would need to look at 
the exact expression in order to see whether additional 
solutions existed. We suggest that if the dissymmetry 
predicted by (6) is large (#^>3TC2), the existence of an 
unsymmetrical solution is implausible. 

One of the contributions to K is described by graph 
2a, which represents the change in the mass of a bound 
state arising from a change in the mass of one constitu­
ent. The charged states are made up of one neutral 
and one charged meson, and the neutral state of two 

charged mesons. Therefore, we have 

A ± ( 2 a ) = a ( A ± + A 0 ) = - a a / \ / 6 , 

A0 (2a) = a (2 A±) - 2aa/y/6, 

where a is a constant, presumably positive, which 
characterizes the internal structure of the particles. 
From (7), we obtain K<ia=—«. We wish to emphasize 
that the effect represented by Eq. (7) is not to be looked 
upon as a modification of the ordinary second-order 
self-energy term, even though we have pictured it by 
such a graph. In fact, the end vertices in graph (a) in 
Fig. 2 could be interpreted as standing for ladder 
graphs with an indefinite number of vertical rungs, in 
accordance with our view of the vector states as states 
bound by the ladder-approximation potential. 

If the mass of the exchanged quantum is increased 
by an amount A, the potential is presumably decreased 
in magnitude, leading to a resultant energy increased 
by /3A. This effect is represented by graph 2 (b). Since for 
SU2 the exchange quantum has the same charge as the 
bound state, we obtain i£"2&=+/3. 

We continue to assume, as in Ref. 9, that at every 
vertex the independent covariants have fixed ratios. 
Then the question of a change in the ratios of the cou­
pling constants does not arise for SU2, because there is 
only one. 

The values of a and p cannot be calculated without 
a detailed dynamical model; in particular, they depend 
on the way the cutoff is introduced. A simple way is to 
assume that for each line, the propagator is regularized 
with auxiliary masses which are taken to be propor­
tional to the physical mass. One then obtains for the 
ladder approximation, by considering the effect of a 
change in the unit of mass, the identity 

2 a + j 8 = l . (8) 

One expects, moreover, that a~/3, so that each would 
be about | . In the ladder approximation, therefore, one 
anticipates that K~0. 

The coefficient L of the second-order term in (5) 
represents nonlinear effects on the bound-state energy 
of a change in the masses of the constituents or of the 
exchanged quantum. The size, and even the sign of 
these terms appears to be quite model-dependent. We 
expect, in any event, that \L\ <9TC~2. The SU2 model 
could not, then, have a solution with a small dissym­
metry, and we should like to suggest the possibility 
that it does not admit any second unsymmetrical solu­
tion. A detailed investigation of this question would be 
of considerable interest. 

III. THE SUz MODEL: FIRST-ORDER 
PERTURBATIONS 

Wre now return to the quantity K(r) appearing in 
(3), and evaluate it within the ladder approximation. 
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FIG. 3. First-order 
vertex modifications 
showing explicitly 
the use of the ladder 
approximation. Sym-
metrization with re­
spect to the three 
legs is implied. -K 
Graph 2 (a) gives the following contribution to Kab,cdAcd: 

Aab(2a)==aF craF sdbi^cd^rs-h^rs^ccl) 

= —2aFacrFbdrAcd, (9) 

where a is the same quantity appearing in (7). The 
eigenvalues of FacrFbdr are as calculated in Refs. 5, 7, 
and 10, apart from a different normalization, which we 
take to be FabrFbas=^rS in the present work, as in 
Ref. 9. One finds that K2a(S) = a, iT2«(27)= - f a . 

Graph (b) of Fig. 2 leads to : 

Aab(2b) = PFrma( — 2Fr8cAcdFmnd)Fn8b. (10) 

The factor (—2) is introduced into (10) so that & will 
have the same meaning as before. This equation can be 
written as 

^ab (2b) = pZFacrFbd r~f- Lr amr" bur*1 mcs? ndsj&cd > 

from which we find K2b(S) = 0 and i£2&(27) = 5/3/9. 
Comparing these results with those obtained in the 
previous section, we see that the contributions to K(27) 
are similar to the corresponding ones of the SU2 model. 
The additional possibility (8) of the SUz model, on 
the other hand, corresponds to a K(S) which, on the 
basis of these graphs, is positive. This encourages us to 
go further with the calculations. 

In the SUz model there is also a contribution to K 
from graph 2(c), although the calculation of the vertex 
modifications described by Fig. 3 requires that, at least 
implicitly, we go beyond the ladder approximation. I t 
is also, unfortunately, much more difficult. The method 
by which we shall calculate the change in the coupling 
constants can be described as follows: The self-energy 
corrections of Fig. 2 can be thought of as the expecta­
tion value of the "mass energy" [Fig. 2(a)] and of the 
potential energy [Tigs. 2(b) and 2(c)] in the unper­
turbed states. At the same time, we can calculate the 
admixture of components from the representation (20) 
= (3,0)© (0,3) into the eigenstates. These admixtures 
give directly the vertex modifications which are to be 
used in calculating the perturbed potential. We are only 
interested in the changes in the ratios of the coupling 
constants, because their average is determined by the 
equation for self-consistency of the average of the 
masses. 

We know that the vertex must involve the three 
lines symmetrically. However, our method of calcula­
tion treats them in an unsymmetrical way, because one 
particle is thought of as a bound state of the other two. 

This would not matter, if we used the exact potential 
in our calculation and treated the change in the nor­
malization condition properly, because then the sym­
metry would arise automatically. In our calculation, 
we use the ladder approximation and an artificial nor­
malization; to overcome these limitations we must 
symmetrize explicitly at the end. 

We denote by — V the coefficient of the momentum-
dependent factors in the one-particle exchange potential. 
I t is assumed that these momentum-dependent factors 
are approximately the same in all elements of the 
potential, so that they may be adequately represented 
by a suitable average. Then we may assume that the 
mass will be given by an equation having the form 

HP=S-f(V)+aA, (ID 
which is a matrix equation in which M2~S is an eigen­
value and A represents the change in the masses of the 
bound particles. Since for exact 5173 symmetry, V has 
only one nonvanishing eigenvalue, we may write, to a 
sufficient approximation, f(V)=Vf(\)/\ where X de­
notes the larger eigenvalue of V. This may be expanded 
about the unperturbed potential Vo as f(V)~t(Vo+5V) 
+ t'8Vd, where dVd is the part of the perturbation which 
is diagonal in the unperturbed representation. We 
define t so that Vo has a unit eigenvalue. 

We next separate V into two parts, corresponding to 
the two graphs (b) and (c) of Fig. 2 [as well as to 
Figs. 3(b) and 3(c)]. We write 

V=v+pB/(t+tf), 
where B is the change in the mass of the exchanged 
quantum (the coefficient is chosen so that our previous 
definition of (3 is retained) and where v depends only on 
the coupling constants. We, finally, obtain 

f(V) = tv+ [// (t+niPB+f (vd- Vo) 

+\j?/(t+niPBd. (12) 

In calculating for the (1,1) type of dissymmetry, we 
look at Z>(8,0): Ap=-2a\ A ^ = + 2 a ' , and A M = + a ' 
[with a(8,0)= {2\/5)a!~\. The modified coupling con­
stants are: 

j(p8) = go(p3)(l+fo), 

g(MMip) = g0(MM<p)(l+f1)J (13) 

g(MMp) = go(MMp)(l+fi). 

For a dissymmetry described by 22(8,0), it can be 
shown by general arguments that to first order / 2 = 0 
and / i = — f/o. We will demonstrate shortly that these 
ratios form a self-consistent choice. _ 

For the p state, we write \p)= £\pp)+q\MM). As a 
matrix acting on the column vector (£,17), we have 

/ - 4 a ' 0 \ 

\ 0 2a') ' 
(14) 

The matrix v can be calculated from the explicit reduc-
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tion coefficients for SUa (we do not give the details 
here), and has the form: 

(1+/0)2 §v2(i+/2)* \ 

|v2(i+/2)2 §(i+/i)2-i(i+/2)3> 
(15) 

In the present section, only the terms in v which are 
linear in the fi are relevant, but we have given the 
complete form so it can be referred to later. The matrix 
B is gotten by multiplying each term in v by the mass 
change of the exchanged particle which is responsible 
for that term. The result is easily seen to be: 

- f ( l + / o ) 2 f v 2 ( l + / 2 ) 2
 v / ^ 

B = a'l ) . (16) 
f v 2 ( i + / 2 ) 2 ( i + / i ) H - l ( l + / O s 

As a check, it can be verified that the expectation values 
of A and B in the unperturbed state agree with the 
results obtained above. 

In v, we introduce the relations between the fi men­
tioned following Eq. (13). Then, to first order in / 0 

and af, we find the following admixture into the state 
of the p: 

((20) |P)=v2A, (17) 
where 

h=2aa'/t+Pa'/(t+t')+%fo. (18) 

From (17), one easily calculates: 

£=(§) 1 / 2 ( l+/z) , u = ( l ) 1 ' s ( l - 2 A ) . (19) 

.Next, we consider the state \M)=£\pM)+ri\<pM), 
for which the matrices are 

A--
-a' 0 

0 3a' 
(14') 

Ki+/„)(i+/2)- i( i+/2)2 l ( i+/ i)( i+/2) 

i ( i + / 0 (1+/2) K1+/O2 

(15') 

B = a' 
- | ( l+/o)(l+/2)- | ( l+/2)2 KI+/1XI+/2) 

Kl+/i)( l+/2) * ( l + / i ) * 
(16') 

Again calculating to first order, we have 

{(20)\M) = h, (17') 

|=|V2~(l+/>), i ,=*VZ(l-A). (19') 
and 

There is no admixture into the state \<p)= \MM). 
In this state, A, v, and B are just numbers: 

.4 = 2a', (14") 

» = l ( l + / i ) 2 + 4 ( l + / 2 ) 2 , (15") 

5 = a'C(l+/i)2-(l+/2)2]. (16") 

We now symmetrize__ the vertices (p\MM) and 
(M\pM), as well as (<p\MM) and (M\ <pM), among the 
three lines. Then we obtain 

/o=A, / i = - | A , / 2 = 0 . 

On comparing (20) with (18), we find 

h = 6aa'/t+3Pa'/(t+0. 

(20) 

(21) 

When these values are substituted into (15), (15'), or 
(15"), we obtain from the expectation values 

K2c(8) = 2a'+p, (22) 

where a! = a(t-\-t')/t~oi. 
The calculation of K2c(27) proceeds in the same way 

as above. In fact, if we considered a perturbation pro­
portional to D(27,0), we could use the same matrices 
v and merely make appropriate modifications in A and 
B. However, for later reference, we shall discuss D(S), 
which is actually simpler. The two particles (i) with 
Q=Y=0 n a v e A(= — 3a', and the remaining six (o) 
have A0 = a' (with a($) = 2a'\/6). There are only two 
coupling constants: 

(oH)=go(o»i)(l+/i) , 

K°S) = £o(o3)(l+/2), 
(23) 

which are related by f2~ — 3/i. 
In the state | i) there is no admixing: | t ) = | o o ) . 

The values of A, v, and B are 

A = 2a', 

* = i(l+/2)2+!(l+/i)2 , 
^=^Ti(i+/2)2-2(i+/1)2]. 

(24) 

For the 0 we write |o) = £|oi)+?j|oo). The matrices 

A = 
-la' 0 

0 2a'. 

§ ( l + / i ) 2 |v2(l+/1)(l+/2) 

B--

i ^ ( i + / i ) ( i + / 0 *(i+/i)2 

/K1+/02 ^ ( i + / l ) ( i + / s ) 

a'[ 

(25) 

^ ( l + / i ) (l+/2) - ( 1 + / 0 2 

From these we calculate the following admixture: 

((20) 10>=V^' , (26) 
where 

h' = 4aa'/3t-W/9(t+i')+4:f1/9. (27) 

This leads to 

£=(f ) 1 / 2 ( l+ /*0 , u=<i ) 1 ' 2 ( l -2A ' ) . (28) 

Symmetrizing as before, we obtain / i=f&' , / 2= — 2h'y 
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which gives 
Ua'/Sa 13 \ 

h' = ) . (29) 
19 \ / t+t'J 

The expectation values of v then lead to 

j £ 2 o ( 2 7 ) = - 1 6 a ' / 3 - 19+16/5/9-19. 

Adding together our estimates of the various con­
tributions to K, we have 

K:(8)=a+2a'+/3, 

K(27) = - f a - ( 1 6 / 5 7 K + (111/171)0. 

These formulas should be considered in the light of our 
estimate that a, a, and 13 should be near to §. I t is 
certainly consistent with (30) to have a second type of 
solution of the self-consistency equation (1) in which 
the predominate dissymmetry is of the (1,1) type; on 
the other hand, a (2,2) type of dissymmetry is not 
favored. We suggest, as the origin of the Gell-Mann-
Okubo rule, that 

\1-K(S)\«\1~K(27)\. (31) 

While our calculations indicate the plausibility of ob­
taining (31) from a more complete theory, we cannot 
claim to have established it. 

IV. SECOND-ORDER TERMS 

Before we examine the relative sizes of the different 
second order terms in (3), we shall point out an im­
portant result which follows directly from the assump­
tion that it is the nonlinear terms which determine the 
magnitudes of small dissymmetries. This result also 
depends on the dominance of the (1,1) type of dis­
symmetry. If the suggestion (31) is correct, we are 
justified in neglecting the terms in (3) referring to the 
(2,2) dissymmetry when we calculate #(8,0) and a(8,l). 
Then (3) is reduced to 

(l-K)a(0) = Lta(0y-a(iyi, ( 3 2 ) 

(l-K)a(l) = -2La(0)a(l), 

where we have simplified the notation by omitting 
reference to the representation, and where the ratios 
of the terms on the right are obtained from Clebsch-
Gordan coefficients. The solutions to (32) are 

a(0) = a( l ) = 0 , (33a) 

a ( l ) = 0 , a(0) = a = ( l - 2 Q / Z , , (33b) 

a(0) = -%a, a(l) = ±iV3a. (33c) 

Solution (33b) corresponds to retention of isotopic 
spin symmetry. The two solutions (33c) also corre­
spond to SU2 symmetry, but with different pairs of 
the roots shown in Fig. 1 being interpreted as the iso-
topic-spin displacement operators. This feature of the 
solutions to (32) is actually a direct consequence of the 
general discussion given in the introduction, and is 

accordingly more general than Eq. (32); we only need 
to assume that the nonlinear terms involving the a(S,T) 
are more important than those involving the a(27,T). 

We now ask, what a priori criteria might be used to 
distinguish among the solutions (33)? We may note 
that the value of the cutoff parameter A which is fixed 
by the self-consistency requirement will be different 
for solution (33a) and for the other three; this may 
ultimately lead to a way to discriminate against (33a). 
However, the three solutions (33b,c) have completely 
identical properties as far as the strong interactions are 
concerned. In other words, there is no way, as long as 
only the strong interactions are considered, to decide 
which of the conserved quantities should be called the 
"charge" and which the "hypercharge." I t is the electro­
magnetic interactions which distinguish between these 
quantities. The ambiguity is, therefore, a necessary 
feature of any attempt to derive isotopic spin within 
the strong interactions; the explanation of the relation 
between isotopic spin and electromagnetic interactions 
must lie in the nature of electromagnetism. 

In looking more closely at the second-order terms, we 
are chiefly interested in the following points: (1) We 
want to know something about the magnitude of the 
coefficient L in (32); in particular, whether there might 
be reason to suspect it of being anomalously small. 
(2) A small (1,1) dissymmetry will induce, in second 
order, a still smaller (2,2) dissymmetry; choosing T=0, 
we write 

[ l - ^ ( 2 7 ) > ( 2 7 , 0 ) = r a ( 8 , 0 ) S (34) 

under the assumption that second-order terms involving 
a(27,0) can be neglected. I t has been argued that 
| l ~ i ^ ( 8 ) | « | l - - i r ( 2 7 ) | in order to justify this as­
sumption as well as our more general conclusions. I t is 
clear that the ratio L'/L also has considerable signifi­
cance. (3) Hitherto, our remarks have been directed 
towards solutions of Eq. (3) in which the (1,1) dis­
symmetry predominates. We must also look at other 
solutions. In fact, Eq. (3) has so many solutions that a 
complete analysis would require extensive numerical 
computation. Since we are able to derive, by our 
present means, only qualitative information about the 
coefficients, such an investigation would be premature. 
Nevertheless, we should like to examine at least one 
example, and the discussion in the Introduction sug­
gests a suitably simple one—that afforded by the dis­
symmetry D(S); accordingly, we look at the coefficient 
L" in the equation 

[\-K{27)-]a(S) = L"a{S)\ (35) 

We commented in Sec. I I that the second-order terms 
in the SU2 model could not be easily estimated. There 
are similar effects here, which we must similarly ignore, 
but there are, in addition, some relatively simple second 
order terms, arising from the admixing of the (20) 
configuration, which can be obtained from Eq. (11). 
While we would not, perhaps, trust the magnitudes of 
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FIG. 4. Some graphs describing second-order perturbations. 

the effects so derived, we might have more confidence 
in their ratios. For a picture of these effects, we refer 
to Fig. 4. 

The graph 4(a), in which there are two perturbations 
that act in different sections of the ladder, describes an 
effect we estimate by standard second-order perturba­
tion theory. The change in M2 is proportional to the 
squares of the admixture coefficients; for the (1,1), 
T = 0 perturbation 

Ap=-2th2, AM^-UI2, A ^ - 0 . (36) 

There is a change in the average value of M2 within the 
multiplet, which, however, is eliminated by a readjust­
ment of the scale. If we express the deviations (36) in 
terms of the normalized operators D(rfi), we find for 
the coefficients 

a 4 a (8 ,0 )= (4 / v
/ 5)^ 2 , a4«(27,0) = - ( 3 / \ / 3 0 ) ^ . (37) 

For the (S) perturbation, we have 

A L =0, A,= ~2W2, aia($)=-~tk'2V6. (38) 

We now substitute into (37) and (38) the values of h 
and hr previously derived [Eqs. (21) and (29)], and 
obtain the results 

L(4a) = (9/5x/5)x(2a,+l3)2, 

Z/(4a) = - (27/20v
/30)x(2a'+(3)2, (39) 

L"(4a)= - (36/l92V6)x(3a'-p)2, 

where x=t/(t+tj. 
The graph 4(b) is calculated as the expectation 

values in the unperturbed states of the terms in v 
which are of second order in the fi. Similarly, graph 
4(c) represents the contribution to the expectation 
values of B which is of first order in the fi. The results 
are given in Table II , along with (39). The parameter 
y represents (t+t')~~1. Both x and y are expected to be 
near to SHI"-2, or, likely, somewhat smaller. 

TABLE II . Second-order perturbation coefficients 
associated with Fig. 4. 

Graph L V L" 

4(a) +0.805 (2a/+/3)2# -0.246 (2a'+/3)2* -0.041 (3a' -/5)2x 
4(b) +0.224(2a'+/3)2;y +0.091 (la'+pYy +0.040 (3a'-/?)2;y 
4(c) +0.l79/3(2a'+/3);y +0.037/3 (2a'+0)y +O.115jS(3a/-0)y 

From Table I I we see that graph 4(a) seems to be 
the most important. Note that the individual contribu­
tions to L are larger than those to L! or L". Moreover, 
there seems to be some tendency toward cancellation 
among the contributions to JJ and L" which is not 
evident in L. The nature of these second order results, 
therefore, reinforces our contention that self-consistent 
deviations from SZ73 symmetry would necessarily be of 
the (1,1), or 8-fold, type. 

Finally, we wish to remark on the influence of a true 
external perturbation, such as provided by electro­
magnetic interactions, on the self-consistent solutions. 
Let us denote by rf(0) and rj (1) the extra self-energy 
terms which are added to the right hand sides of Eq. 
(32). Solution (33a) is then perturbed to 

a(0) = i 7 (0 ) / ( l -2O, a ( l ) = „ ( l ) / ( l - / 0 , (33a') 

to first order in the 77's, while for (33b) we obtain 

a(0)=(l-K)/L-r,(0)/(l~K), 

a(l) = v(\)/3(l-K). 

The extra contribution to the large dissymmetry a(0) 
would, of course, be difficult to verify empirically. The 
feature of (33b') which we wish to point out is the 
greater stability of the unsymmetrical solution against 
an additional T=l perturbation. 

V. SUMMARY 

The usual way to discuss the approximate symmetries 
of strong interactions is in terms of a zero-order sym­
metrical Hamiltonian and a perturbing addition having 
a specified structure. In this approach, one has the 
technical advantage that there is a well-known sys­
tematic procedure for deriving the consequences of the 
initial assumptions. We are now engaged in the con­
struction of a new theory of the symmetries, in which 
it is assumed that these features do not reflect directly 
features of the Hamiltonian, but arise as special char­
acteristic simplicities of the lowest lying states. Our 
method of investigation is to show first that there 
exists a self-consistent set of particles (in a certain 
approximation) which exhibits a full symmetry, and 
then, using this solution as the starting point, to ex­
amine the possibility of self-consistent sets of the same 
particles in which the mass ratios differ from unity. In 
studying the self-consistency, we trace the influence of 
a given dissymmetry among the interacting particles 
upon the coupling constants and masses calculated for 
the bound states. The technique of calculation in our 
self-consistency approach is exactly the same as in the 
standard one—all the familiar machinery of perturba­
tion theory is evoked. Once it is realized that nothing 
useful of the conventional theory has been lost, there 
need be no difficulty about accepting the changed 
starting point. 

In ascribing a dynamical origin to the symmetry, 
however, a great deal is gained; the possible dissym-
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metries become, so to speak, "quantized" by the self-
consistency requirement, which determines not only the 
qualitative features of the allowable deviations from 
symmetry, but also their numerical magnitudes. In the 
model we have studied, in which eight vector mesons 
interact among themselves, self-consistency has led to 
a number of interesting results concerning the departure 
from SUz symmetry. 

We found, first, that the model is very stable against 
a perturbation from symmetry which has the trans­
formation properties of a 27-fold tensor, and much less 
stable against a perturbation of the 8-fold type.18 This 
has the consequence that the model can be expected to 
have additional self-consistent solutions which have a 
small dissymmetry which is predominantly character­
ized by an 8-fold tensor, but does not have solutions 
with a small 27-fold dissymmetry. Since we consider a 
rather simplified model, and treat it only qualitatively, 
we do not attempt to calculate the numerical value of 
the dissymmetry. However, the fact that the magni-

18 I t would be quite wrong to speak of the symmetrical solution 
as being unstable against an 8-fold perturbation, since the magni­
tude of the deviation is, in fact, prescribed. 

I. INTRODUCTION 

WE present here a relativistic model for scalar-
meson-scalar-meson scattering and discuss the 

analytic properties of the resulting partial-wave scat­
tering amplitude in the complex angular momentum 
plane. The method consists of decomposing the partial-
wave amplitude, a(s,l), 

a(s,l) = N(s,l)tl+D(s,l)']~1, (l.D 

and calculating both N and D by perturbation expan­
sions using an interaction of the form (g/3!): <£3:. The 
details of the method will be given in the next section. 

* Work supported in part by the U. S. Atomic Energy Com­
mission, 

tudes are determined by self-consistency leads at once, 
as we have shown, to retention of SU* symmetry. In 
other words, our model leads, in a naturalistic way, 
both to the Gell-Mann-Okubo mass formula and to 
the isotopic spin concept. 

Finally, it should be pointed out that our present 
work is limited in three respects. First, we do not have 
a useful criterion for choosing between the completely 
symmetrical solution and the solution with perturbed 
symmetry; in fact, we have not even given an a priori 
reason for preferring SU$ to any other group. Second, 
we have relied on qualitative arguments in estimating 
the parameters which describe the internal dynamical 
structure of the bound states. We should like to sug­
gest, as a particularly useful program of numerical 
computation, the precise evaluation of bound state 
energies for a variety of input masses. This would deter­
mine these parameters more exactly, and also allow the 
exploration of the possibility of very unsymmetrical 
solutions to Eq. (1). Third, it is clear that the inter­
relations among the dissymmetries of different kinds of 
particles will be of particular interest. This last question 
we intend to discuss further in another paper. 

Although the procedure is explicitly carried out to 
fourth order, we believe that some of the results 
established hold for all orders in g. One result is that 
the Regge trajectories 

/=«„($), » - l , 2 , . - . , ' (1.2) 

with the possible exception of n= 1, cannot be expanded 
in a power series in g. As we shall show later, this is 
intimately connected with the failure of the pertur­
bation expansion near negative integer values of I. 

Another result obtained is that the contribution of 
inelastic processes to the scattering amplitude leads, in 
a simple way, to the existence of branch cuts in the 
complex / plane for the denominator function to fourth 
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The analytic properties of the partial-wave amplitude in the complex angular momentum plane are 
investigated in a relativistic scalar-meson theory. Using a N/D decomposition, the numerator and denomina­
tor are calculated by perturbative expansions to fourth order in the coupling constant. Higher order poles at 
negative integer values of I are found in both the numerator and denominator, leading to a breakdown in their 
perturbation expansions near these singularities. The same breakdown occurs for all but the leading Regge 
trajectory. It is further found that, to fourth order, due to inelastic processes, the denominator has branch 
cuts for values of I near negative integers. 


